
Zara Syed
Algorithms — Optimizations — Firmware

+1 647 284 5350 zara.syed@uwaterloo.ca linkedin.com/in/zarasyeduw zarasyed.com

SKILLS

Languages: Python, C/C++, Matlab, HTML/CSS, SQL
Libraries: Tensorflow, Keras, PyTorch, Scikit-Learn, SciPy, Pandas, Numpy, Matplotlib
Tools: Simulink, vFlash, CANalyzer, Azure, Docker, Git, Regular Expressions, Jenkins, PTC

EXPERIENCE

Magna Powertrain September 2024 - Present
Base Software Engineering Intern Troy, MI

• Revolutionized requirements traceability and achieved 100% audit readiness by automating requirements
linking of 4000 functions across 10 million lines of C code using Python, Clang, LLVM, RegEx, and Excel.

• Automated performance evaluation consolidation for customer updates, with 99% task completion time
reduction, parsing 130+ HTML Unit Test reports using Python, RegEx, Jenkins, and Excel saving 8-10 hours
each release.

• Enhanced vehicle software reliability by developing CAN traffic analysis tool, using Python, RegEx, and
CANalyzer to detect anomalies in millions of lines of diagnostic data in seconds.

• Conducted in-vehicle tests to evaluate CPU load across maneuvers, software versions, and vehicle types (PHEV
and ICE) using vFlash and CANalyzer.

Magna Powertrain Jan 2024 – Apr 2024
Control Algorithms and Software Engineering Intern St. Valentine, Austria

• Developing patent-eligible deep learning solution for motor control systems, demonstrating graduate-level
research rigor as an undergraduate.

• Eliminated time-intensive PID controller tuning process by replacing controller with reinforcement learning
agent.

• Implemented real-time Python-MATLAB-Simulink synchronization interface for over 100+ hours of model
training.

• Designed and implemented reinforcement learning algorithm and engineered mathematical reward function
for motor control optimization within custom Gymnasium environment.

Magna Mechatronics, Mirrors, & Lighting May 2023 – Sept 2023
Machine Learning DevOps and Software Engineering Co-op Newmarket, ON

• Developed and deployed machine learning web app to advise engineers’ automotive material choices by
predicting stress-strain curves, using Python, Tensorflow, Flask, SQL, Docker, Azure DevOps, Azure App
Services and with CI/CD.

• Engaged in cross-functional and international collaboration, including colleagues in Italy, China, and India.
• Trained machine learning model to estimate friction coefficient in automotive part materials with Python,

Tensorflow, Keras.

ON Semiconductor Sep 2022 – Dec 2022
Digital Signals Processing Algorithm Developer Waterloo, ON

• Developed 32-bit fixed-point firmware functions for LPDSP32 using C, including signal windowing.
• Reduced memory usage by 75% and cycle count by 45% by leveraging conditional compilation and cyclical

addressing in signal windowing function.
• Profiled cycle counts of 15+ functions using ChessDE and reported to customer facing documentation.

XSENSOR Technology Corporation Jan 2022 – Apr 2022
Machine Learning Intern Calgary, ON

• Developed Human pose estimation (HPE) pipeline which processed 2 million+ sensor inputs using Tensorflow,
Keras, Pandas, Numpy, and Multiprocessing.

• Developed 85% accurate Anthropometric meta data extraction functionality for HPE pipeline.
• Built digital filter tuner used to tune FIR parameters to 87% accuracy for biosignal extraction.
• Prepared dataset report and augmentation and expansion strategy for CEO with 500k+ data points.

PROJECTS

FashionMNIST Classication | Python, PyTorch, Jupyter Notebook | GitHub Nov 2024 - present
• Implementing GPU accelerated training of Convolutional Neural Network (CNN).

Real Time Operating System | C, STM32 | GitHub Sep 2023 – Dec 2023
• Developed kernel and functionality for thread creation, thread scheduling, and multithreading.

Bluetooth Robotic Claw Arm | Arduino Uno, Arduino mini Apr – June 2023
• Robotic claw arm mimics real time human action using accelerometers, gyroscopes, flex sensors, DC & servo

motors.

Autonomous Vehicle Simulation | Python, Tensorflow Jan 2019 – Mar 2019
• Built CNN to train self-driving car using end-to-end learning and computer vision on Udacity’s self-driving car

simulator.
EDUCATION

University of Waterloo Sep. 2021 – April 2026
Candidate for BASc, Honors Mechatronics Engineering Waterloo, ON

• Relevant Courses: Embedded Systems, Microprocessors, Computer Architecture, Real Time Operating
Systems, Data Structures and Algorithms, Circuits, Power Electronics, Statistics

mailto:zara.syed@uwaterloo.ca
https://linkedin.com/in/zarasyeduw
https://zarasyed.com/
https://github.com/ZSyed350/FashionMNIST
https://github.com/ZSyed350/my-RTOS

Zara Syed
Algorithms • Optimizations • Firmware
Mechatronics Engineering Student @ UWaterloo

+1 647 284 5350
zarasyed.com

zara.syed@uwaterloo.ca
linkedin.com/in/zarasyeduw

Reinforcement Learning: Redefining Motor Control (Article)

Actor-Critic Method

Training Results: Plant Output Approaches
Steady-State

Overview
I developed an advanced deep learning solution for motor

control systems, simplifying the complexity of traditional

model-based control algorithms by replacing them with a

single, adaptive reinforcement learning (RL) agent. Using

an Actor-Critic Deep Deterministic Policy Gradient (DDPG)

method, I trained the RL agent to replicate the functional-

ity of a PID controller. This solution eliminates the need for

time-consuming PID tuning while delivering precise, adap-

tive control across a wide range of operating conditions.

Learning Environment
The learning environment is built in Simulink, including a

motor, a reference value, and a feedback loop. The motor

is modeled by a plant with an arbitrary transfer function.

The DDPG algorithm in Python processes real-time simula-

tion data to train the agent. To ensure seamless interaction

between Python and Simulink, I implemented a synchroniza-

tion mechanism that allowed the simulation to run step-by-

step, sending data to Python at each step, ensuring a smooth

workflow.

Model Training
The learning framework involves 2 neural nets, based in

Python: an actor, and a critic. The actor outputs what ac-

tions, or control value, it thinks the RL agent should perform

in the environment. In Simulink, this action is executed.

The updated environment state data is sent back to Python,

where the critic attempts to predict the reward, as it does not have access to the reward function. The ac-

tual reward function output is compared to the critic’s prediction, and the resultant error is used to advise

both networks’ updated parameters via backpropagation.

Results and Takeaways
The RL agent was able to reach the reference value. I was really surprised to see that the trained RL agent

replicated the exact behavior of a PID controller, without ever having any reference to a PID controller. I

also internalized that the reward function design is a strong contributor to the agent’s learning!

https://zarasyed.com/
mailto:zara.syed@uwaterloo.ca
https://linkedin.com/in/zarasyeduw
https://medium.com/@zsyed350/reinforcement-learning-redefining-motor-control-deed7641231b

Zara Syed
Algorithms • Optimizations • Firmware
Mechatronics Engineering Student @ UWaterloo

+1 647 284 5350
zarasyed.com

zara.syed@uwaterloo.ca
linkedin.com/in/zarasyeduw

No Libraries, No Shortcuts: Engineering Backpropagation from
Scratch (Github)

Image From UC Irvine Machine Learning
Repository

Training Results: Error Over Time

Overview
To deeply understand the ins-and-outs of the backpropaga-

tion algorithm, I took on the challenge of building and train-

ing a neural network completely from scratch, without the

use of any machine learning libraries. To demonstrate the

application of the algorithm, the model classifies species of

iris flowers. An in-depth code and algorithm walk-through

is available at my Github.

Model
The network had three layers: an input layer, a hidden layer

powered by the Leaky ReLU activation function, and an out-

put layer using the Softmax function for probabilistic predic-

tions.

Algorithm
After much literature review to fully understand the back-

propagration algorithm, I developed my own implementa-

tion, applying calculus concepts including gradients, partial

derivatives, and chain rule. The resulting functionality up-

dates the parameters of the model in a ”backwards” fashion,

hence the name: backpropagation. In short, for each predic-

tion of the model, the error is computed with respect to each

parameter. Then, a proportional update is made to each pa-

rameter. For more details, find my report on my Github repo.

Results
The maximum accuracy achieved was an impressive 97%, demonstrating a clear drop in error over time,

proving the work of the backpropagation algorithm. This experience reinforced my passion for diving deep

into complex algorithms and turning theory into results.

https://zarasyed.com/
mailto:zara.syed@uwaterloo.ca
https://linkedin.com/in/zarasyeduw
https://github.com/ZSyed350/Backpropagation
https://github.com/ZSyed350/MLP
https://github.com/ZSyed350/MLP

	Skills
	Experience
	Projects
	Education
	Reinforcement Learning: Redefining Motor Control (Article)
	No Libraries, No Shortcuts: Engineering Backpropagation from Scratch (Github)

